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Bayesian Causal Mediation Analysis for Group
Randomized Designs with Homogeneous and

Heterogeneous Effects: Simulation and Case Study

Soojin Park and David Kaplan
Department of Educational Psychology, University of Wisconsin–Madison

A fully Bayesian approach to causal mediation analysis for group-randomized designs is pre-
sented. A unique contribution of this article is the combination of Bayesian inferential methods
with G-computation to address the problem of heterogeneous treatment or mediator effects. A
detailed simulation study shows that this approach has excellent frequentist properties, partic-
ularly in the case of small sample sizes with accurate informative priors. The simulation study
also demonstrates that the proposed approach can take into account heterogeneous treatment
or mediator effects without bias. A case study using data from a school-based randomized
intervention designed to increase parent social capital leading to improved behavioral and aca-
demic outcomes in children is offered to illustrate the Bayesian approach to causal mediation
in group-randomized designs.

INTRODUCTION

This article is motivated by the following problem. Con-
sider an intervention that is administered at the school
level but where the variables of interest are measured
at the within-school (child, parent) level. In the ex-
ample that will serve as the case study for this ar-
ticle, interest centers on a randomized intervention re-
ferred to as Families and Schools Together (FAST; L.
McDonald & Frey, 1999; McDonald, 2002). The FAST in-
tervention is designed to increase parent-parent and parent-
school social capital among low-income families. The out-
come of interest is improved behavioral and academic out-
comes for the children that attend the school. The design
of the intervention involves random assignment of schools
to the FAST intervention or to a control. The mediator, im-
proved social capital, is measured at the parent level, and the
evaluation includes important variables that mediate between
the intervention and the outcome. Thus, the implementation
of the intervention follows a group-randomized design.

Two aspects of the above mentioned study serve to moti-
vate the purposes of this article. First, in order to establish the
causal impact of the treatment on the outcome via a mediator,
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it is important to establish if the treatment or mediator effect
can be assumed to be constant or whether it is more sensible
to assume that the treatment or mediator effect varies across
individuals. This is the problem of homogeneous versus het-
erogeneous effects, respectively. Second, it is important to
account for the multilevel structure of the data inherent in
group-randomized experiments.

The goal of this article, therefore, is to develop
causal mediation analysis for group-randomized de-
signs that can account for homogeneous and hetero-
geneous treatment or mediator effects. We adopt a
Bayesian framework for the specification and estima-
tion of model parameters insofar as Bayesian infer-
ence allows for the incorporation of prior knowledge re-
garding the distribution of model parameters into the
analysis.

The organization of this article is as follows. In
the next section, we provide a brief overview of conventional
causal mediation analysis following closely the work of Imai
and his colleagues (Imai, Keele, & Yamamoto, 2010; Imai,
Keele, & Tingley, 2010; Imai, Keele, Tingley, & Yamamoto,
2011). Next, we propose our fully Bayesian approach to
multilevel causal mediation analysis, including our proposed
method addressing heterogeneous treatment or mediator ef-
fects. This is followed by a simulation study. Next, we pro-
vide a case study using data from the FAST intervention. The
article closes with conclusions.
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BAYESIAN CAUSAL MEDIATION 317

Brief Review of Single-Level Causal Mediation
Analysis

The problem of estimating direct and indirect effects has
been an integral part of the history of structural equation
modeling going back to Goldberger and Duncan (1972), and
certainly with the seminal work of Duncan (1975). The work
of Duncan and others showed how one could convert the
structural form of a model into the so-called reduced form
of the model, solve issues of identification and estimation,
and return the values of the structural parameters as well
as the indirect and total effects. An important overview of
mediating effects based on conventional path analysis can be
found in MacKinnon (2008).

In their classic paper, Baron and Kenny (1986) offered
a simple approach to the estimation of direct and indirect
effects, which rests on the assumption of linear relation-
ships among the variables and homogeneous mediation ef-
fects. With the advent of full information methods such as
full information maximum likelihood and generalized least
squares, it is, in principle, unnecessary to use the stepwise
approach of Baron and Kenny (1986). However, despite the
ability to estimate direct and indirect effects simultaneously,
the Baron and Kenny approach remains quite popular.

Perhaps owing to the need for a more detailed “unpacking”
of interventions, recent work by Imai and his colleagues (see
Imai, Keele, & Yamamoto, 2010; Imai, Keele, & Tingley,
2010; Imai, Keele, Tingley, & Yamamoto, 2011), combined
the classical Baron and Kenny (1986) approach to mediation
analysis in the structural equation modeling framework with
the potential outcomes framework of Rubin (1974), under
the rubric of causal mediation analysis. Unlike the Baron
and Kenny (1986) approach, Imai and his colleagues gave a
formal causal interpretation to mediation analysis.

The estimation approaches of Imai and his colleagues
(Imai, Keele, & Yamamoto, 2010; Imai, Keele, & Tingley,
2010; Imai, Keele, Tingley, & Yamamoto, 2011) have been
based primarily on nonparametric or frequentist-based para-
metric methods. Of course, frequentist-based parametric pro-
cedures for structural equation modeling, including the Baron
and Kenny approach, have been available for several decades
(see Kaplan, 2009). More recently, Bayesian approaches have
become available for structural modeling (see e.g., Kaplan
& Depaoli, 2012; Lee, 2007; Muthén & Asparouhov, 2012;
Song & Lee, 2012; Yuan & MacKinnon, 2009), owing to the
development and application of Markov chain Monte Carlo
estimation methods (see e.g., Geman & Geman, 1984; Gilks,
Richardson, & Spiegelhalter, 1996).

Regardless of the estimation approach, any desire to un-
pack the mediating mechanisms of school-based interven-
tions must account for the fact that the organizational struc-
ture of schooling consists of students and/or teachers nested
in schools. Indeed, in many instances, the substantive prob-
lem concerns understanding the role that units at both levels
play in some outcome of interest. In the example that we

will provide below, the intervention is provided at the school
level, with the outcome being measured at the within-school
level. Such data collection plans are generically referred to
as clustered sampling designs. Data from clustered sampling
designs are then collected at both levels for the purposes of
understanding each level separately, but also to understand
the inputs and processes of student and school level variables
as they predict both school-and student-level outcomes. The
need to properly analyze data arising from clustered sampling
designs has led to the development of multilevel models (see
e.g., Burstein, 1980; Goldstein, 2011; Raudenbush & Bryk,
2002). Extensions of multilevel models to structural equa-
tion modeling have been given in Schmidt (1969), Muthén
(1989), Goldstein and McDonald (1988), McDonald and
Goldstein (1989), McDonald (1993), and McDonald (1994).

Extensions of multilevel models to causal mediation anal-
ysis have been given in Reardon and Raudenbush (2013), and
VanderWeele, Hong, Jones, and Brown (2013). Reardon and
Raudenbush (2013) explicated assumptions needed to iden-
tify the average treatment effect in the context of multi-site
randomized trials. However, the Reardon and Raudenbush
(2013) paper should be understood as a generalization of the
instrumental variable approach rather than mediation anal-
ysis, as the direct effect of the treatment on the outcome is
assumed to be zero by the exclusion restriction assumption.
VanderWeele, Hong, Jones, and Brown (2013) explicated as-
sumptions needed to identify the average causal mediation
effect (ACME) with multiple mediators under the multilevel
setting. Their study illustrates the case where the aggregated
mediator is included in the between-level model, which re-
quires the sequential ignorability assumption for multiple
mediators to identify the ACME.

In addition to capturing the multilevel features of most
educational interventions, an additionally important prob-
lem is that of capturing heterogeneous treatment or mediator
effects. Specifically, as mentioned earlier, conventional ap-
proaches to mediation analysis such as the Baron and Kenny
(1986) approach assume that the treatment or mediator ef-
fect is constant for all individuals. However, in many cases, it
may be more reasonable to assume that the mediation effect
varies with values of observed and unobserved covariates.

Potential Outcomes Framework: Notation and
Definitions

In this section, we provide a brief introduction to the potential
outcomes framework of Rubin (1974). This is followed by a
discussion of single-level causal mediation analysis follow-
ing closely the work of Imai, Keele, and Tingley (2010) and
Imai et al. (2011). This is then followed by the proposed the-
oretical steps necessary to estimate the posterior distribution
of the outcome under causal mediation analysis.

To begin, let Ti ∈ {0, 1} be a binary treatment indicator
for individual i, let Mi ∈ M be a mediator, let Yi ∈ Y be
an outcome variable, and let Xi ∈ X be observed treatment
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318 PARK AND KAPLAN

covariates. Then, we can write the potential mediator asMi (t)
and the potential outcome asYi(t, m). The termMi(t) denotes
the potential mediator for unit i when Ti = t ;Yi(t, m) denotes
the potential outcome for unit i when Ti = t and Mi = m.

Under the potential outcomes framework, Imai, Keele,
and Tingley (2010) define the unit-level causal mediation
effect under t as

δi(t) ≡ Yi(t,Mi(1)) − Yi(t,Mi(0)), (1)

where t ∈ {0, 1}. Equation (1) represents how the outcome
is changed when the mediator is changed while holding the
treatment constant at Ti = t . Pearl (2000) denotes Equation
(1) as the unit-level natural indirect effect because the medi-
ator takes on the value that it would naturally assume under
the assigned treatment status. In other words, the parameter
δi(t) is the change in the potential outcome for individual i
in response to a change in the mediator from the value that
would have been obtained under treatment status t = 1 to the
value that would have been obtained under treatment status
t = 0 while fixing treatment status to t.

The unit-level causal natural direct effect under t is written
as

ζi(t) ≡ Yi(1,Mi(t)) − Yi(0,Mi(t)), (2)

which represents the causal effect of the treatment on the
outcome for individual i holding the mediator at its potential
value when Ti = t .

The unit-level total causal effect represents how a
treatment-induced change in the outcome is realized both
through and not through the mediator. The unit-level total
causal effect can be expressed as the combination of the
unit-level causal mediation effect under t and the unit-level
causal natural direct effect under (1 − t) and is written as

τi = δi(t) + ζi(1 − t) (3)

where t ∈ {0, 1}. Then, the unit-level total causal effect is de-
fined as Yi(1,Mi(1)) − Yi(0,Mi(0) after plugging Equations
(1) and (2) into Equation (3).1

From here, Imai, Keele, Tingley, and Yamamoto (2011)
define the ACME and the average natural direct effect
(ANDE) as

δ̄(t) ≡ E(δi(t)) = E{Yi(t,Mi(1)) − Yi(t,Mi(0))}
ζ̄ (t) ≡ E(ζi(t)) = E{Yi(1,Mi(t)) − Yi(0,Mi(t))} (4)

where expectations are averaged over individuals.

1To verify the relationship, note that
τi = δi (1) + ζi (0)

= Yi (1,Mi (1)) − Yi (1,Mi (0))
+ Yi (1,Mi (0)) − Yi (0,Mi (0))

= Yi (1,Mi (1)) − Yi (0,Mi (0))

Identification

In line with the fundamental problem of causal infer-
ence (Holland, 1986), we can observe Yi(t,Mi(t)) but not
Yi(t,Mi(t ′)) [see Equations (1) and (2)]. Thus, to solve this
identification problem we need to invoke additional assump-
tions. The main assumption needed to identify the ACME
is referred to as sequential ignorability and is an extension
of the strong ignorability assumption of Rubin (1974). For-
mally, the sequential ignorability assumption begins by re-
quiring that measures on observed covariates be obtained
prior to treatment assignment. Then, the sequential ignora-
bility assumption can be written as

{Yi(t ′,m),Mi(t)} ⊥ Ti |Xi = x

Yi(t
′,m) ⊥ Mi(t)|Ti = t, Xi = x (5)

for t ∈ {0, 1} and t ′ = (1 − t). The first part of the sequen-
tial ignorability assumption implies that given the observed
indicators, there is no confounding between the treatment
and mediator as well as the outcome. The second part of the
sequential ignorability assumption implies that there is no
confounding between the treatment and mediator given ob-
served treatment status and observed indicators. In addition,
there should not be a post treatment variable that is affected
by the treatment and that also affects both the mediator and
outcome.

Under these assumptions, the ACME is nonparametrically
identified and given by Imai, Keele, and Yamamoto (2010),
and Imai, Keele, Tingley, and Yamamoto (2011) as,

δ̄(t) =
∫ ∫

E(Yi |Mi = m, Ti = t, Xi = x)

{dFMi |Ti=1,Xi=x(m) − dFMi |Ti=0,Xi=x(m)}dFXi (x).

(6)

The average natural direct effect is identified as

ζ̄ (t) =
∫ ∫

{E(Yi |Mi = m, Ti = 1, Xi = x)

−E(Yi |Mi = m, Ti = 0, Xi = x)}
dFMi |Ti=t,Xi=x(m)dFXi (x) (7)

where Fx(·) and FM|T (·) represent the distribution function
of a random variable X and conditional distribution function
of M given T .

An Aside: Linear Structural Equation Modeling

It is useful to examine the classical linear structural equa-
tion modeling (LSEM) approach to mediation in light of
the causal mediation approach of Imai, Keele, Tingley, and
Yamamoto (2011). In particular, the concern focuses on the
conditions under which the LSEM approach to mediation
leads, to valid causal inferences. Recall from Baron and
Kenny (1986) that the mediation effect without an interaction
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BAYESIAN CAUSAL MEDIATION 319

between the treatment and the mediator can be estimated
based on following equations:

Yi = α1 + β1Ti + ξ ′
1Xi + εi1

Mi = α2 + β2Ti + ξ ′
2Xi + εi2

Yi = α3 + β3Ti + γMi + ξ ′
3Xi + εi3. (8)

The question concerns whether the usual product-of-
coefficients estimator β̂2γ̂ is a proper estimate of the causal
mediation effect. As pointed out by Imai, Keele, Tingley,
and Yamamoto (2011), if we assume sequential ignorability
as well as no interaction—namely that δ̂(1) = δ̂(0), then β̂2γ̂

is a valid estimate of the causal mediation effect under the
assumption of linear relations among the variables.

Estimation

Under the sequential ignorability assumption, paramet-
ric estimation of the ACME is straightforward. One
may follow the proposal of Baron and Kenny (1986),
namely estimating the ACME as δ̂(t) = β̂2γ̂ by fit-
ting two separate linear regressions given in Equations
(8). The standard error for the ACME can be calcu-
lated using the Delta method (Sobel, 1982), that is,
Var[δ̂(t)] ≈ β2

2Var (γ̂ ) + γ 2Var (β̂2), or the variance for-
mula of Goodman (1960), that is, Var[(δ̂(t)] = β2

2Var (γ̂ ) +
γ 2Var (β̂2) + Var (γ̂ )Var (β̂2). The average natural indirect
and total effects and their standard errors can be esti-
mated directly from the fitted linear regressions given in
Equation (8).

Several nonparametric estimators for the ACME have
also been proposed. One may use the simple nonparamet-
ric estimator given in Equation (6). By the law of large
numbers, this estimator asymptotically converges to the true
ACME under the sequential ignorability assumption. The
second approach uses nonparametric regression to model
μtm ≡ E(Yi |Ti = t,Mi = m,Xi = x) and νtm ≡ Pr(Mi =
m|Ti = t, Xi = x), and then employs the following
estimator:

δ̂(t) = 1

n

n∑
i=1

J−1∑
m=0

μ̂tm(Xi)(ν̂1m(Xi) − ν̂0m(Xi)) (9)

where M is discrete and takes J distinct values, that is,
M = {0, 1, . . . J − 1} and n is the number of subjects.
When the mediator is not discrete, the ACME can be es-
timated by employing the following estimator after mod-
eling μ̂tm(x) ≡ E(Yi |Ti = t,Mi = m,Xi = x) and ψt (x) =
p(Mi |Ti = t, Xi = x).

δ̂(t) = 1

nL

n∑
i=1

L∑
l=1

μ̂
tm̃

(l)
1i

(Xi) − μ̂
tm̃

(l)
0i

(Xi), (10)

where m̃l1i is the lth Monte Carlo draw of the mediator Mi

from its predicted distribution based on the fitted model

ψ̂t (Xi). Since there is no corresponding asymptotic vari-
ance estimator, nonparametric bootstrapping can be used to
estimate the corresponding standard error.

BAYESIAN MULTILEVEL CAUSAL MEDIATION
ANALYSIS

In this section, we propose a fully Bayesian approach to
multilevel causal mediation analysis. We will first present
extended identification results for multilevel causal media-
tion models for two cases: (1) when a mediator is at the
student level and (2) when mediators are at both the student
and school levels. Causal structural models for both cases are
shown in Figures 1 and 2. Then, we provide the estimation
method under the Bayesian framework.

Identification

As before, let i = 1, 2, . . . N students, and j = 1, 2, . . . J
schools. In the case where the intervention is implemented
at the school level, with the mediator and outcome being
measured at the within-school level, the ACME is defined
the same as Imai, Keele, Tingley, and Yamamoto (2011);
namely,

δ̄(t) = E{Yij (t,Mij (1)) − Yi(t,Mij (0))} (11)

where t ∈ 0, 1. The ACME is identified under the following
set of assumptions:

{Yij (t ′,m),Mij (t)} ⊥ Tj |Xij = x

Yij (t ′,m) ⊥ Mij (t)|Tj = t, Xij = x (12)

where t ∈ 0, 1 and t ′ = 1 − t . The definition and assump-
tions can be interpreted the same as those for single-level
models.

Under the assumptions given in Equation (12), the ACME
is identified as in Equation (6) in which the conditional dis-
tribution of M and the conditional expectation of Y are es-
timated based on following mediator and outcome models,
respectively. Structural equations for the random intercept-
only model are expressed as

Mij = α2i + β2iTj + π2iXij + u20j + ε2ij

Yij = α3i + β3iTj + γiMij + κiTjMij

+π3iXij + u30j + ε3ij . (13)

For the intercept and slope model, the second expression
in Equation (13) can be written as

Yij = α3i + β3iTj + (γi + u31j )Mij + κiTjMij + π3iXij

+u30j + ε3ij . (14)

For the random intercept and random intercept and slope
model, the ACME is identified and given byE[β2i(γi + tκi)]
for t = 0 or 1 under assumption (12). A proof for identifying
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320 PARK AND KAPLAN

the ACME in multilevel settings is identical to the proof under
single-level settings unless there exists spillover effects in
which the exposure of one individual to the treatment affects
the outcome of the other individual.

Equations (13) and (14) have some important differences
in comparison to the structural equation models shown in
Equation (8). First, the use of multilevel analysis takes into
account the nested structure of the data. In group-randomized
designs, a group consists of individuals and is viewed as a ran-
domization unit, and many group-randomized designs suffer
from the interference between individuals (Jo et al., 2008).
Ignoring the interference between individuals may result in
underestimation of standard errors yielding an inflation of
the Type I error rate for the treatment effect. Here, we pro-
vide correct standard errors by using the multilevel analysis
technique. The correlation among individuals within groups
in the mediator as well as the outcome is controlled using the
random intercept model shown in Equation (13). The cor-
relation among individuals within groups in the relationship
between the mediator and outcome is controlled using the
random slope model shown in Equation (14). Second, un-
like Baron and Kenny’s conventional approach, our model
allows heterogeneous effects of the treatment and mediator,
which is represented by the subscript i in the coefficients.
We introduce our approach to estimating the ACME under
heterogeneous effects in the section on G-computation with
Bayesian inferential methods.

In group-randomized designs, interference between
groups may occur if the mediator of interest is measured at
the within-school level. The interference between units may
give rise to spillover effects (VanderWeele et al., 2014). For
example, in the FAST example, improvement in parent social
capital is hypothesized as an important variable that mediates
the effect of the FAST intervention on reducing student peer
problems. In addition to the mediator, the FAST effect may
be reinforced by the atmosphere in the school created by the
improved level of parent social capital on average. The exis-
tence of spillover effects results in violating Rubin (1974)’s
Stable Unit Treatment Value Assumption (SUTVA).

In the event of spillover effects, the ACME is defined
differently than the case where a mediator exists at the within-
school level. VanderWeele, Hong, Jones, and Brown (2013)
provide the statistical framework of causal mediation analysis
when SUTVA is violated. The framework is similar to the
case where there exists two independent mediators (Imai &
Yamamoto, 2013). The ACME that is mediated through the
within-school level mediator is defined as

δ̄w(t) = E{Yij (t,Mij (1),Wj (t)) − Yij (t,Mij (0),Wj (t))} (15)

for t ∈ {0, 1} andWj represents the between-school level me-
diator. Equation (15) expresses the difference in the outcome
in response to a change in the within-school level mediator
after fixing the treatment status to t and the between-school
level mediator to the value that would have resulted under t.

In the causal structural model of Figure 2, this is represented
by the path from T to Y that is mediated through M.

The ACME that is mediated through the between-school
level mediator is defined as

δ̄b(t) = E{Yij (t,Mij (t),Wj (1)) − Yij (t,Mij (t),Wj (0))} (16)

where t ∈ {0, 1}, andWj represents the between-school level
mediator. The term δ̄b(t) represents the difference in the out-
come in response to a change in the between-level mediator
W after fixing the treatment status to t and the within-school
level mediator to the value that would have resulted under t.
In the causal structural model of Figure 2, this is represented
by the path from T to Y that is mediated through W.

The ACME is identified under the following set of as-
sumptions:

{Yij (t ′,m),Mij (t)} ⊥ Tj |Xij = x

Yij (t ′,m) ⊥ Mij (t)|Tj = t, Xij = x

Yij (t ′,m) ⊥ Wj (t)|Tj = t, Xij = x (17)

where t ∈ {0, 1} and t ′ = (1 − t). The assumptions in Equa-
tion (17) can be interpreted in the same way as the sequential
ignorability assumption described before except for the last
assumption. The last assumption states that there is no con-
founding between the between-school level mediator and
outcome given the treatment status and observed covariates.

Perhaps more importantly, independence is assumed be-
tween the within- and between-school level mediators. This
assumption implies that there exists no causal path between
the within- and between-level mediators (see Figure 2). This
is a very strong assumption and may not be plausible in
practice. In many cases, the interaction between individuals
may generate spillover effects, and individual change in the
mediator is reinforced by the spillover effects. Thus, further
study is required to address this last assumption. This arti-
cle focuses only on the case where spillover effects are not
present.

G-Computation with Bayesian Inferential
Methods

In this section, we introduce a modified G-computation ap-
proach using Bayesian inferential methods. The method of
G-computation was first introduced by Robins (1986) for
estimating causal effects in the presence of time-varying
treatments. The method of G-computation is a causal in-
ference technique that estimates the distribution of poten-
tial outcomes. The causal effect is estimated by computing
the difference between the potential outcomes under dif-
ferent treatment regimes, e.g., treated and not treated. The
G-computation approach can also be applied to a mediation
setting as it is a special case of the time-varying treatments
approach where individuals are treated or exposed at two dif-
ferent time points with the outcome measured at each time
point. Specifically, a mediator can be viewed as the treatment
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BAYESIAN CAUSAL MEDIATION 321

or exposure at (t + 1) when the treatment is assigned at time
t.

The first step in G-computation is no different than
conventional regression. A distinctive feature of the G-
computation approach is that it separates the estimation of the
effects of interest and the effects that are not directly related
to the research question by using the marginal distribution
of random variables (Snowden et al., 2011). For example, in
the case where the treatment effect varies with a covariate,
G-computation provides a single value that is weighted by
the observed frequency of the covariate in the set data. A de-
tailed explanation of G-computation and how it differs from
conventional regression can be found in Robins (1986) and
Snowden, Rose, and Mortimer (2011).

We combine G-computation with Bayesian inferential
methods. We argue that a fully Bayesian approach to causal
mediation analysis has certain philosophical advantages over
the frequentist approach. The most important advantage lies
within Bayesian philosophy itself—namely that the Bayesian
approach directly incorporates the analyst’s degree of uncer-
tainty into an analysis by means of the elicitation of prior dis-
tributions on all model parameters (see e.g., Kaplan, 2014).
With respect to causal mediation analysis, prior knowledge
can be brought to bear on the ACME.

The ACME can be estimated using a Monte-Carlo G-
computation algorithm (Robins, 1989). The algorithm is not
based on integration but based on a simulation technique to
approximate the distribution of the causal mediation effect.
We modify the algorithm to accommodate the multilevel
structure of the data and combine it with Bayesian inferential
methods. The steps of the algorithm are outlined below.

Algorithm Steps

1. Fit a Bayesian multilevel regression for the mediator
and outcome models separately.

2. Draw coefficient values from posterior distributions of
the mediator and outcome models using MCMC.

3. Generate potential mediator valuesM(1) andM(0) us-
ing the coefficients drawn from posterior distributions
and the design matrix of the mediator model.

4. Generate four potential outcomes given the potential
mediator values Y (1,M(1)), Y (1,M(0)), Y (0,M(1))
and Y (0,M(0)) using the coefficients drawn from pos-
terior distributions and the design matrix of the out-
come model. Potential mediator values are generated
from Step 3.

5. Compute the mediation effect. The mediation ef-
fects for t = 1 and 0 are δ(1) = Y (1,M(1) −
Y (1,M(0)) and δ(0) = Y (0,M(1)) − Y (0,M(0)), re-
spectively. The combined mediation effect is computed
as (δ(1) + δ(0))/2.

Several remarks on the algorithm steps are as follows.
First, the number of generated potential mediator and out-

come values for each individual from Step 3 and 4 is equal to
the number of draws from the posterior distributions. Each
drawn value of the potential mediator and outcome represents
a random sample from the posterior distributions of the poten-
tial mediator and outcome. The posterior standard deviations
are estimated based on the posterior distributions of δ(1) and
δ(0). Second, the random effects and errors drawn from pos-
terior distributions of the mediator and outcome models are
added in generating potential mediator and outcome in order
to accommodate the multilevel structure of the data. Third,
note that the generated potential outcomes of Y (0,M(1)),
and Y (1,M(0)) for individual i are never observed. Only the
average potential outcome over individuals is identified after
assuming sequential ignorability, and the distribution of the
potential outcomes is estimated by using the G-computation
method. Lastly, the simple average between δ(1) and δ(0) is
used to estimate the combined mediation effect. The simple
average is used because the estimated ACMEs for treated and
control are defined hypothetically. The term δ(1) represents
the hypothetical mediation effect where everyone received
the treatment, and δ(0) represents the hypothetical mediation
effect where everyone received the control. Thus, δ is defined
as the hypothetical mediation effect where the treatment and
control are equally distributed across the target population.
However, depending on the researcher’s interest, the average
ACME weighted by the proportion of treated and control can
be used for the combined mediation effect.

In fitting separate Bayesian multilevel regressions, we use
the estimation method that was incorporated in the R pack-
age (R Development Core Team, 2013) MCMCpack (Mar-
tin et al., 2010). For the random intercept model, we fit the
Bayesian multilevel models given in Equations (13) and (14),
where the random effects are given the following distribu-
tions:

u20j ∼ N (0, V2b),

u30j ∼ N (0, V3b), (18)

And the errors:

ε2ij ∼ N
(
0, σ 2

2

)
,

ε3ij ∼ N
(
0, σ 2

3

)
, (19)

where V2b and V3b are the variances of the random effects,
and σ 2

2 and σ 2
3 are error variances.

The following conjugate prior distributions are specified
for Equations (13) and (14) for the parameters of the model:

β ∼ Np(μβ, Vβ ), (20)

σ 2 ∼ Inverse-gamma(v, 1/ω), (21)

Vb ∼ Inverse-Wishart(r, rR), (22)

where β represents all the fixed effects in the model, and
are assumed to follow a normal distribution with prior mean
(μβ) and variance (Vβ). The error variance (σ 2) is assumed
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322 PARK AND KAPLAN

to follow the Inverse-gamma distribution with shape (ν)
and scale (ω) parameters. The covariance matrix of random
effects (Vb) is assumed to follow the Inverse-Wishart distri-
bution with the shape (r) and the scale (R) parameters. For a
detailed explanation of conjugate priors see Gelman, Carlin,
Stern, and Rubin (2003).

The joint posterior distribution of the parameters of the
random intercept model can be expressed as

p(α2, β2, σu20j , σε2ij |M) ∝ p(M|α2, β2, σu20j , σε2ij )

× p(α2|σu20j ) × p(β2)p(σu20j )p(σε2ij ), (23)

and

p(α3, β3, γ, σu30j , σε3ij |Y ) ∝ p(Y |α3, β3, γ, σu30j , σε3ij )

× p(α3|σu30j )p(β3)p(γ )p(σu30j )p(σε3ij ) (24)

where σu0j and σεij represents the random effect for school
j and the residual for student i in school j, respectively. We
use MCMC via a Gibbs sampler to obtain the joint posterior
distributions.

DESIGN AND RESULTS OF SIMULATION
STUDIES

In this section we conduct two simulation studies to test
the performance of our proposed Bayesian approach to mul-
tilevel causal mediation analysis under homogeneous and
heterogeneous effects. Under homogeneous effects, the re-
sults of the proposed approach coincide with the results of
Baron and Kenny’s conventional regression approach under
the frequentist framework. Thus, the purpose of the first sim-
ulation study is to demonstrate the Bayesian and frequentist
properties of the proposed approach. Under heterogeneous
effects, the proposed approach should yield different results
than Baron and Kenny’s approach by virtue of taking into
account the heterogeneous effects using G-computation. We
aim, therefore, to demonstrate the advantage of the proposed
approach over the conventional approach in the second sim-
ulation study.

Simulation Study 1: Homogeneous Effects

Using the proposed approach, the ACME between a ran-
dom intercept only and a random intercept and slope model
is estimated under the following study design conditions:
(a) non-informative and informative priors on coefficients,
(b) inaccurate and accurate priors, (c) varying precisions of
inaccurate and accurate priors, (d) different values of the
intra-class correlation (ICC), and (e) different group sample
sizes with a constant within-group sample size.

A non-informative prior refers to vague or diffused in-
formation on coefficients whereas informative prior refers
to specific and definite information on coefficients. Un-
der the non-informative prior condition we set μβ to zero

along with precisions ( 1
Vβ

) of 0.2 Under the informative prior
condition, we consider the situation where we have inac-
curate or accurate priors on coefficients. An accurate prior
refers to information that is close to the true value whereas
an inaccurate prior refers to information that is far from the
true value. We set μβ arbitrarily to zero in order to mimic the
case where the researcher has inaccurate prior information
while accurate priors are obtained from true parameter val-
ues used in the simulation study. For accurate and inaccurate
priors, we examine three levels of precision: 1, 10, and 100.
One may argue that a researcher should not use an inaccurate
prior with a high level of precision. However, we used the
same three levels of precision for the inaccurate prior situa-
tion to study the case in which a researcher believes that the
wrong prior is correct.

In multilevel Bayesian models, it is important to incorpo-
rate appropriate priors on the covariance matrix of random
effects (Vb) and the error variance (σ2). In our simulation
study, we used non-informative inverse-Wishart and inverse-
gamma priors to mimic the case where a researcher lacks
knowledge on the covariance matrix of random effects (Vb)
and the error variance (σ2). The inverse-Wishart (1, 0.1) and
the inverse-Wishart (2, R) are used for the random intercept
only and random intercept and slope models, respectively,
where R is a diagonal matrix of (0.1, 0.1). For the error
variance, inverse-gamma (0.001, 0.001) is used as a non-
informative prior.

Gelman (2006) noted that serious problems can occur
with the inverse-gamma family of non-informative prior dis-
tributions, and recommends to use the uniform prior when the
number of groups is small and in other settings where weakly
informative priors are necessary. Bearing this caveat in mind,
the simulation study was conducted with non-informative
inverse-gamma priors due to the limitation of the program
MCMChregress (in MCMCpack) that only allows one to in-
corporate the inverse-gamma distribution as the prior distri-
bution for the error variance.

Multilevel data were generated as follows. First, a cluster
identification number was assigned to every 10 students.
Random effects and residuals of the mediator and outcome
were generated from a multivariate normal distribution of
the τ and σ 2 matrix, respectively. The τ and σ 2 matrix are
determined by varying the ICC (0.1, 0.2 and 0.3). For the
random slope model, we set the covariance of the random
intercept and the slope to the same value as the variance
of the intercept. The treatment indicator was generated as a
vector of ones and zeros.

For the random intercept model, the mediator and outcome
values for individual i who attended school j were generated
as follows.

Mij = 8.1 + 1.2Tj + u20j + ε2ij

2Setting 1
Vβ

= 0 tells MCMCpack to set a improper uniform prior.
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BAYESIAN CAUSAL MEDIATION 323

Yij = −1.0 − 1.4Tj − 2.6Mij

− 0.5TjMij + u30j + ε3ij (25)

For the random slope model, the mediator and outcome val-
ues are generated as

Yij = −1.0 − 1.4Tj + (−2.6 + u31j )Mij

− 0.5TjMij + u30j + ε3ij . (26)

The coefficients are drawn by applying the same model to
the FAST data. However, some adjustments are made to
the coefficients in order to avoid the small effect size is-
sue (the effect size of the ACME in the FAST data is –0.04).
To ensure that the effect size is at least moderate, the coeffi-
cients are multiplied by 10. Data consists of three variables
T ,M, Y , and the cluster ID. Nine data sets were generated
with varying group sample size 5, 10, and 30 while the within-
group sample size is set to 10, crossed with varying values
of the ICC (0.1, 0.2, and 0.3). These conditions were also
crossed with the inaccurate and accurate informative priors
conditions.

The R package MCMChregress utilizes a Gibbs sampler.
For this study, results were based on 2,000 MCMC iterations
with a thinning interval of 2 after 1,000 burn-in for both
the mediator and outcome models. In general, 2,000 MCMC
iterations with a thinning interval of 2 is a relatively small
number of iterations but we assessed convergence of the
sampler by examining the posterior density plots and trace
plots. Convergence of the Gibbs sampler was obtained for all
cells of the study design. These plots, as well as the R code,
are available at http://bise.wceruw.org/publications.html.

The outcomes of interest for the simulation study portion
of this article are the %Bias and Root Mean Square Error
(hereafter, RMSE) for the ACME. The %Bias and RMSE are
computed based on 500 replications as

%Bias = δ̄ − δ

δ
∗ 100 (27)

RMSE =
√
�K
i=1(δi − δ)2

K
(28)

where δ̄ is the mean of the estimated mediation effect, δi
is the estimated mediation effect for ith replication and K
is number of replications (K = 500). In essence, this design
offers an evaluation of the frequentist properties of a Bayesian
estimate (see Little, 2006, 2011).

In addition to the measures for the posterior mean, we also
present the standard deviation of the posterior distribution.
This measure offers a measure of the width of the credible
interval for each iteration. The posterior standard deviation
is also based on 500 replications and obtained as

P.S.D. =
√
�K
i=1σ

2
i

K
(29)

where K is the number of replications and σ 2
i is the variance

of the estimated mediation effect for iteration i.

Results of Simulation Study 1

Results for the random intercept models are shown in Tables
1, 2, and 3 and the results for the random intercept and slope
models are shown in Tables 4, 5, and 6. The first column
displays the results for the control [δ(0)] and for the treated
[δ(1)] conditions. The second column denotes ICC condi-
tions followed by the level of precision ( 1

Vβ
). The remainder

of the tables display the results under the inaccurate prior
and accurate prior conditions. The first column of each ICC
represents the non-informative uniform prior case.

As shown in Table 1, the bias under non-information pri-
ors is in general 3 to 4% when the sample size is 50 (five
schools), and it does not differ much by ICC levels. Under
informative priors, the bias and variance differ as a function
of the accuracy of the priors. Using inaccurate priors, the bias
increases up to 100% when the precision level is 100, while
it decreases to less than 1% with the same precision using
accurate priors. The variance becomes smaller as the level of
precision increases. The pattern shown in bias and variance is
because the posterior estimates are shifted toward the priors
as precision increases. This result implies that accurate priors
with greater precision can help in solving the small sample
size issue, while wrong priors with greater precision could
lead to severely distorted results. This finding is completely
consistent with the logic of Bayesian inference.

With a sample size of 100 (10 schools), the bias is less
than 2% under the non-informative priors condition and also
does not depend on the ICC levels. Under the informative
priors condition, results show the same patterns as found in
sample size of 50 condition in which the bias depends on the
accuracy of the priors. With a sample size of 300 (30 schools),
results show that the bias is less than 1% in most cases except
where wrong priors are specified with high levels of precision
(10 or 100).

Results from the random intercept and slope models are
shown in Tables 4, 5, and 6. Unlike the random intercept
models, the bias depends on the ICC levels in which bias
increases as the ICC level increases. For example, with a
sample size of 50, the bias under the non-informative priors
case is only 0.9 when the ICC level is 0.1, while it is 8.1
when the ICC level is 0.3. This change is due to the fact that
the effective sample size is lower as the ICC level increases.
Under the informative priors case, the bias also changes ac-
cording to the accuracy of priors the same as with the random
intercept models.

With sample sizes of 100 and 300, the pattern of results is
similar to the random slope models with a sample size of 50.
The only difference is that the bias is smaller when compared
to a sample size of 50 within the same conditions.

As shown across all of the tables, posterior standard devi-
ations follow consistent patterns: (1) greater precision of the
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324 PARK AND KAPLAN

TABLE 1
Random Intercept Model with Sample Size of 50 (5 Schools)

Inaccurate Prior Accurate Prior

True Value ICC Prec. Est. %Bias RMSE P.S.D. Est. %Bias RMSE P.S.D.

δ̂(0) = –3.12 0.1 0 −3.029 2.9 0.826 0.828 −3.029 2.9 0.826 0.828
1 −2.837 9.1 0.793 0.791 −3.029 2.9 0.741 0.771

10 −0.799 74.4 2.422 0.503 −3.057 2.0 0.465 0.578
100 −0.000 99.9 3.120 0.014 −3.097 0.7 0.121 0.268

0.2 0 −3.036 2.7 0.784 0.741 −3.036 2.7 0.784 0.741
1 −2.891 7.4 0.747 0.711 −3.035 2.7 0.716 0.699

10 −1.196 61.7 2.060 0.565 −3.059 1.9 0.479 0.544
100 −0.000 99.9 3.120 0.015 −3.097 0.8 0.136 0.264

0.3 0 −3.043 2.5 0.739 0.652 −3.043 2.5 0.739 0.652
1 −2.940 5.8 0.700 0.628 −3.042 2.5 0.686 0.622
10 −1.632 47.7 1.633 0.584 −3.060 1.9 0.490 0.504
100 −0.000 99.9 3.120 0.017 −3.096 0.7 0.154 0.259

δ̂(1) = –3.72 0.1 0 −3.568 4.1 0.991 1.0 −3.568 4.1 0.991 1.000
1 −3.495 6.0 0.934 0.972 −3.603 3.2 0.869 0.902
10 −1.115 70.0 2.733 0.647 −3.643 2.1 0.544 0.673
100 −0.001 99.9 3.719 0.020 −3.692 0.8 0.143 0.311

0.2 0 −3.582 3.7 0.940 0.894 −3.582 3.7 0.940 0.894
1 −3.558 4.4 0.883 0.872 −3.610 2.9 0.838 0.816

10 −1.594 57.2 2.298 0.709 −3.645 2.0 0.560 0.633
100 −0.002 99.9 3.718 0.021 −3.691 0.8 0.159 0.306

0.3 0 −3.595 3.4 0.885 0.787 −3.595 3.4 0.885 0.787
1 −3.614 2.8 0.832 0.769 −3.618 2.8 0.801 0.727

10 −2.105 43.4 1.800 0.722 −3.647 1.9 0.572 0.586
100 −0.002 99.9 3.718 0.024 −3.690 0.8 0.180 0.300

Note. (1) ICC= Intra-Class Correlation; RMSE = Root Mean Square Error; Prec. = Precision; Est. = Estimate; and P.S.D. = Posterior Standard Deviation.
(2) When precision is 0, results are based on non-informative priors. (3) Accurate priors are obtained from true parameter values while inaccurate priors are
set arbitrarily to zero.

prior leads to smaller standard deviations regardless of using
accurate or inaccurate priors; (2) standard deviations asso-
ciated with models that have small sample sizes are larger;
and (3) standard deviations in the random slope models are
larger than in the random intercept models across all other
conditions.

We also find that bias is a function of the sample size and
accuracy of priors for the random intercept models, while
it is a function of the ICC, sample size and accuracy of
priors for the random intercept and slope models. Because
the estimated ACME is derived from two parameters, i.e., β2

and γ , the ACME is affected only by the random effect of
the slope but not the intercept.

Simulation Study 2: Heterogeneous Effects

As shown in Simulation Study 1, the bias for the estimated
ACME is less than 1% when the ICC is 0.1 and the sample
size is 300 with 30 schools. We conducted a small simulation
study under this condition, aiming to compare the ACME es-
timated under the proposed approach and the conventional
Baron and Kenny (1986)’s approach in the presence of het-
erogeneous treatment and mediator effects.

The ACME estimated under both approaches is compared
under the following study design conditions: (a) the differ-
ence in the probability of being in the treatment group for

those with X = 1 and X = 0, (b) the difference in the average
mediator value for those with X = 1 and X = 0, and (c) the
difference between the random intercept only and random
intercept and slope models.

The conventional Baron and Kenny approach to causal
mediation analysis assumes a linear and constant effect with
the ACME estimated as β2(γ + κt) where t ∈ {0, 1} and β2,
γ and κ are obtained from the mediator and outcome regres-
sion models under the frequentist framework. In contrast,
the proposed approach assumes that the mean response is
also linearly related to X but with varying slope when T =
1 and T = 0. The ACME is estimated as E[β2i(γi + κit)]
where t ∈ {0, 1} using Monte Carlo G-computation algo-
rithm (Robins, 1989).

To generate data with heterogeneous treatment effects,
an interaction effect is included between the treatment and
covariate X in the mediator model shown in Equations (25)
and (26). The interaction effect between the treatment and
covariate X creates the heterogeneous treatment effect on the
mediator depending on the value of X (1.5TjXij ). For the
sake of simplicity, X was generated as a binary variable that
takes on values of 1 or 0 that follows the Bernoulli distribu-
tion. Likewise, we included the interaction effect between the
mediator and covariate X in the outcome model (1.7MijXij )
to generate heterogeneous mediator effects.
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BAYESIAN CAUSAL MEDIATION 325

TABLE 2
Random Intercept Model with Sample Size of 100 (10 Schools)

Inaccurate Prior Accurate Prior

True Value ICC Prec. Est. %Bias RMSE P.S.D. Est. %Bias RMSE P.S.D.

δ̂(0) = –3.12 0.1 0 −3.111 0.3 0.547 0.562 −3.111 0.3 0.547 0.562
1 −3.115 0.2 0.523 0.550 −3.117 0.1 0.519 0.545

10 −2.180 30.1 1.025 0.519 −3.117 0.1 0.391 0.463
100 −0.002 99.9 3.118 0.020 −3.116 0.1 0.128 0.249

0.2 0 −3.112 0.3 0.519 0.504 −3.112 0.3 0.519 0.504
1 −3.148 0.9 0.500 0.491 −3.118 0.1 0.495 0.492

10 −2.340 24.9 0.880 0.476 −3.118 0.1 0.391 0.428
100 −0.002 99.9 3.118 0.023 −3.116 0.1 0.141 0.243

0.3 0 −3.113 0.2 0.488 0.444 −3.113 0.2 0.488 0.444
1 −3.172 1.7 0.471 0.433 −3.119 0.0 0.469 0.435

10 −2.500 19.8 0.738 0.426 −3.119 0.0 0.388 0.389
100 −0.003 99.9 3.117 0.027 −3.117 0.1 0.245 0.235

δ̂(1) = –3.72 0.1 0 −3.760 1.1 0.654 0.713 −3.760 1.1 0.654 0.713
1 3.842 3.2 0.649 0.689 −3.734 0.4 0.609 0.658
10 −2.714 27.0 1.126 0.649 −3.723 0.1 0.457 0.548
100 −0.007 99.8 3.713 0.030 −3.718 0.0 0.146 0.292

0.2 0 −3.760 1.1 0.618 0.639 −3.760 1.1 0.618 0.639
1 −3.879 4.3 0.626 0.616 −3.736 0.4 0.580 0.594

10 −2.910 21.8 0.953 0.594 −3.724 0.1 0.457 0.507
100 −0.009 99.8 3.711 0.034 −3.719 0.0 0.161 0.285

0.3 0 −3.760 1.1 0.580 0.562 −3.760 1.0 0.580 0.562
1 −3.902 4.9 0.596 0.543 −3.738 0.5 0.549 0.527

10 −3.106 16.5 0.788 0.532 −3.726 0.2 0.453 0.461
100 −0.012 99.7 3.708 0.039 −3.720 0.0 0.179 0.275

Note. (1) ICC= Intra-Class Correlation; RMSE = Root Mean Square Error; Prec. = Precision; Est. = Estimate; and P.S.D. = Posterior Standard Deviation.
(2) When precision is 0, results are based on non-informative priors. (3) Accurate priors are obtained from true parameter values while inaccurate priors are
set arbitrarily to zero.

In the presence of heterogeneous treatment effects on the
mediator, the difference in the probability of being in the
treatment group for those with X = 1 and X = 0 is a crit-
ical condition to see the difference in the estimated ACME
between the conventional and proposed approaches. Schafer
and Kang (2008) noted that the conventional regression ap-
proach is sensitive to the assumption that the mean response
is linearly related to X with identical slopes when T = 1 and
T = 0, particularly if the distribution of X in the two groups
are very different. Thus, three different probabilities of being
in the treatment group for those with X = 1 and X = 0 are
considered:

(1) P (T = 1|X = 1) − P (T = 1|X = 0) = 0.6,
(2) P (T = 1|X = 1) − P (T = 1|X = 0) = 0.3, and
(3) P (T = 1|X = 1) − P (T = 1|X = 0) = 0.

Likewise, in the presence of heterogeneous media-
tor effects on the outcome, three different levels of
the average mediator value for those with X = 1 and
X = 0 are considered:

(1) (M̄|X = 1) − (M̄|X = 0) = 3,
(2) (M̄|X = 1) − (M̄|X = 0) = 1, and

(3) (M̄|X = 1) − (M̄|X = 0) = 0.

All other conditions of the simulation study remain the
same as the non-informative mediation model used in Simu-
lation Study 1. Outcomes of interest are also consistent with
Simulation Study 1 as shown in equations (27)–(29).

We used non-informative priors on the coefficients, the co-
variance matrix of the random effects, and the error variance.
Assuming informative priors can be elicited, it is relatively
straightforward to incorporate these priors into the heteroge-
neous treatment effect model.

Results of Simulation Study 2

The comparison of the ACME estimated by the conventional
and proposed approaches under the heterogeneous treatment
is shown in Table 7. The ACME estimated by the conven-
tional approach is biased when the difference in the probabil-
ity of being in the treatment group when X = 1 and X = 0 is
larger than 0. The bias is more than 8% when the difference
in the probability for those with X = 1 and X = 0 is 0.3,
and the bias is more than 15% when the difference is 0.6. In
contrast, the bias in the ACME estimated by our proposed
approach is less than 1% regardless of the difference in the
probability for those with X = 1 and X = 0.
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326 PARK AND KAPLAN

TABLE 3
Random Intercept Model with Sample Size of 300 (30 Schools)

Inaccurate Prior Accurate Prior

True Value ICC Prec. Est. %Bias RMSE P.S.D. Est. %Bias RMSE P.S.D.

δ̂(0) = –3.12 0.1 0 −3.108 −0.395 0.3 0.309 −3.108 0.4 0.342 0.309
1 −3.154 1.1 0.334 0.305 −3.108 0.4 0.336 0.306

10 −2.800 10.3 0.441 0.305 −3.108 0.4 0.302 0.288
100 −0.014 99.5 3.106 0.045 −3.110 0.3 0.155 0.203

0.2 0 −3.108 0.4 0.325 0.279 −3.108 0.4 0.325 0.279
1 −3.146 0.83 0.318 0.275 −3.108 0.4 0.321 0.276

10 −2.871 7.9 0.384 0.274 −3.108 0.4 0.294 0.263
100 −0.027 99.1 3.095 0.053 −3.110 0.3 0.164 0.193

0.3 0 −3.109 0.3 0.306 0.246 −3.109 0.3 0.306 0.246
1 −3.139 0.6 0.300 0.243 −3.109 0.3 0.303 0.245
10 −2.935 5.9 0.335 0.242 −3.109 0.3 0.283 0.235

100 −0.099 96.8 3.039 0.073 −3.111 0.3 0.173 0.181
δ̂(1) = –3.72 0.1 0 −3.697 −0.6 0.416 0.377 −3.697 0.6 0.416 0.377

1 −3.834 3.1 0.421 0.373 −3.700 0.5 0.399 0.366
10 −3.455 7.1 0.457 0.377 −3.705 0.4 0.354 0.340

100 −0.062 98.3 3.658 0.063 −3.709 0.3 0.178 0.237
0.2 0 −3.698 0.6 0.395 0.339 −3.698 0.6 0.395 0.339

1 −3.816 2.6 0.399 0.337 −3.701 0.5 0.381 0.331
10 −3.540 4.8 0.401 0.338 −3.706 0.4 0.344 0.310
100 −0.092 97.5 3.631 0.076 −3.710 0.3 0.189 0.226

0.3 0 −3.700 0.5 0.372 0.299 −3.700 0.5 0.372 0.299
1 −3.799 2.1 0.373 0.297 −3.702 0.5 0.360 0.293
10 −3.616 2.8 0.358 0.298 −3.706 0.4 0.331 0.277

100 −0.196 94.7 3.545 0.103 −3.710 0.3 0.200 0.212

Note. (1) ICC= Intra-Class Correlation; RMSE = Root Mean Square Error; Prec. = Precision; Est. = Estimate; and P.S.D. = Posterior Standard Deviation.
(2) When precision is 0, results are based on non-informative priors. (3) Accurate priors are obtained from true parameter values while inaccurate priors are
set arbitrarily to zero.

The same pattern is shown under the heterogeneous me-
diator effect. As shown in Table 8, the ACME estimated by
the conventional approach is biased when the difference in
the average mediator value for those with X = 1 and X = 0
is larger than 0. The bias is more than 4.9% when the dif-
ference in average mediator value is 3, and the bias is more
than 7% when the difference is 0.6. In contrast, the bias in
the ACME estimated by the proposed approach is less than
1% regardless of the difference in the average mediator value
for those with X = 1 and X = 0. The same pattern holds for
both the random intercept only and random intercept and
slope models.

Note that the unbiased results of our proposed approach
are only possible when models are correctly specified. For
example, our approach will provide the same results as the
conventional approach if the interaction effect between T and
X (or the interaction effect between M and X) is not included
in the model.

CASE STUDY

We apply our proposed approach for estimating the ACME
in group randomized designs under the Bayesian framework
using the FAST example described in the introduction.

Data

FAST is a program that aims to develop social capital, es-
pecially relations of trust and shared expectations, among
parents, school staff, and children. The program includes an
8-week session of weekly group meetings and 2 years of
monthly follow-up parent-led meetings. The program was
originally designed to increase social capital among minor-
ity families, and it demonstrated that the active engagement
of parents in the program led to improved behavioral and
academic outcomes of their children. The program was im-
plemented in 47 states and 16 countries (McDonald & Frey
1999; McDonald 2002).

The FAST intervention was implemented following a
group-randomized design. Twenty six schools were assigned
to participate in FAST and the other 26 schools were assigned
to continue with business as usual without FAST. Parent so-
cial capital was measured both before and after the treatment
period. Student behavioral outcome was reported by teachers
after the treatment period.

Turley and her colleagues (Turley et al., 2012) examined
the causal effect of the FAST intervention on student peer
problems, and found evidence that the FAST intervention
has a significant effect on reducing student peer problems.
They went one step further, and attempted to investigate the
mechanisms of the effect. Their interest focussed on whether
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TABLE 4
Random Slope Model with Sample Size of 50 (5 Schools)

Inaccurate Prior Accurate Prior

True Value ICC Prec. Est. %Bias RMSE P.S.D. Est. %Bias RMSE P.S.D.

δ̂(0) = –3.12 0.1 0 −3.149 0.9 0.841 0.836 −3.149 0.9 0.841 0.836
1 −2.940 5.8 0.790 0.807 −3.147 0.9 0.774 0.780

10 −1.597 48.8 1.607 0.687 −3.139 0.6 0.517 0.591
100 −0.245 92.2 2.876 0.297 −3.133 0.4 0.256 0.312

0.2 0 −3.182 1.9 1.066 1.652 −3.192 2.3 1.226 1.672
1 −2.992 4.0 0.774 0.726 −3.149 0.9 0.771 0.708

10 −1.786 42.8 1.442 0.655 −3.142 0.7 0.557 0.557
100 −0.287 90.8 2.834 0.296 −3.135 0.5 0.311 0.305

0.3 0 −3.391 8.7 2.660 11.311 −3.374 8.1 2.633 11.433
1 −3.040 2.6 0.759 0.644 −3.151 0.9 0.763 0.632
10 −1.994 36.1 1.266 0.611 −3.145 0.8 0.592 0.517

100 −0.345 88.9 2.777 0.298 −3.137 0.5 0.362 0.297
δ̂(1) = –3.72 0.1 0 −3.753 0.9 1.027 1.050 −3.753 0.9 1.027 1.050

1 −3.629 2.5 0.940 0.995 −3.745 0.7 0.902 0.923
10 −1.979 46.8 1.850 0.849 −3.736 0.4 0.588 0.688

100 −0.285 92.3 3.436 0.345 −3.728 0.2 0.257 0.343
0.2 0 −3.852 3.5 2.366 2.788 −3.864 3.8 2.603 2.819

1 −3.689 0.8 0.919 0.894 −3.747 0.7 0.891 0.837
10 −2.214 40.4 1.645 0.808 −3.739 0.5 0.628 0.648
100 −0.341 90.8 3.381 0.350 −3.731 0.3 0.315 0.337

0.3 0 −4.606 23.8 6.890 18.335 −4.600 23.6 6.939 18.460
1 −3.743 0.6 0.898 0.791 −3.749 0.8 0.875 0.747

10 −2.473 33.5 1.426 0.754 −3.742 0.6 0.663 0.601
100 −0.415 88.8 3.308 0.358 −3.733 0.3 0.368 0.329

Note. (1) ICC= Intra-Class Correlation; RMSE = Root Mean Square Error; Prec. = Precision; Est. = Estimate; and P.S.D. = Posterior Standard Deviation.
(2) When precision is 0, results are based on non-informative priors. (3) Accurate priors are obtained from true parameter values while inaccurate priors are
set arbitrarily to zero.

FAST effects on reducing student peer problems were me-
diated through improvement in parent social capital, that is,
intergenerational closure. Intergenerational closure is based
on parent self report about whether parents know the parents
of their children’s friends.

The FAST intervention serves as the treatment (T) and
is a dichotomous variable that takes on the value 1 when a
school is assigned to the intervention or 0 otherwise. Inter-
generational closure, which serves as the mediator (M), is a
numeric variable that counts the number of parents of their
children’s friends that a participating parent knows. The de-
pendent variable is the index of peer problems (Y), and is a
continuous variable. The pretreatment measures of intergen-
erational closure and design effects that are used in Turley,
Gamoran, Turner, and Fish (2012) are also included in the
model. The sample size is 1,833. According to the simula-
tion studies in the previous section, the sample size is large
enough to provide a reliable result even with non-informative
priors under the sequential ignorability assumption as long
as models are correctly specified.

Assumptions and Estimation

The sequential ignorability assumption that is needed to iden-
tify and estimate the ACME when a mediator is at the parent
level is shown in Equaton (12). The first part of the assump-

tion implies that there is no confounding between the FAST
intervention and the number of parents of their children’s
friends (intergenerational closure) as well as the peer prob-
lems. The first part of the assumption is achieved by the
randomization of the FAST intervention. However, note that
the benefit of randomization vanishes if there exist parents
who did not comply with the treatment protocol. In that case,
the ACME is no longer identified even after satisfying the
sequential ignorability assumption and a different approach
is required to identify and estimate the ACME (Yamamoto,
2013).

This case study assumes that parents and students are all
affected by the FAST intervention regardless of their partici-
pation in the FAST program, and also assumes perfect com-
pliance to the treatment protocol. The second assumption
implies that there is no confounding between intergenera-
tional closure and student peer problems given the treatment
status and covariates. This assumption is not guaranteed to be
met even after conditioning on covariates, and is not empiri-
cally testable. Thus, conducting a sensitivity analysis would
be desirable if it is available. However, the assumption may
be plausible because the pretreatment measure of parent so-
cial capital is controlled. In the case where there are other
observed covariates that are believed to confound the me-
diator and outcome relationship, they should be included in
addition to the pretreatment measure of parent social capital.
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328 PARK AND KAPLAN

TABLE 5
Random Slope Model with Sample Size of 100 (10 Schools)

Inaccurate Prior Accurate Prior

True Value ICC Prec. Est. %Bias RMSE P.S.D. Est. %Bias RMSE P.S.D.

δ̂(0) = –3.12 0.1 0 −3.122 0.1 0.598 0.569 −3.122 0.1 0.598 0.569
1 −3.095 0.8 0.572 0.556 −3.119 0.0 0.570 0.550

10 −2.159 30.8 1.054 0.525 −3.118 0.1 0.432 0.469
100 −0.440 85.9 2.682 0.283 −3.121 0.0 0.203 0.268

0.2 0 −3.098 0.7 0.714 2.614 −3.098 0.7 0.709 2.614
1 −3.132 0.4 0.557 0.498 −3.122 0.1 0.559 0.497

10 −2.314 25.8 0.919 0.482 −3.120 0.0 0.448 0.434
100 −0.524 83.2 2.600 0.289 −3.122 0.1 0.239 0.261

0.3 0 −2.976 4.6 1.152 12.489 −2.977 4.6 1.146 12.489
1 −3.162 1.4 0.543 0.439 −3.124 0.1 0.546 0.442
10 −2.470 20.8 0.789 0.433 −3.122 0.1 0.461 0.396

100 −0.636 79.6 2.489 0.297 −3.122 0.1 0.273 0.252
δ̂(1) = –3.72 0.1 0 −3.705 0.4 0.729 0.684 −3.705 0.4 0.729 0.684

1 −3.802 2.2 0.702 0.677 −3.712 0.2 0.666 0.645
10 −2.682 27.9 1.166 0.648 −3.715 0.1 0.498 0.547

100 −0.538 85.5 3.185 0.346 −3.719 0.0 0.209 0.303
0.2 0 −3.618 2.7 1.561 4.221 −3.621 2.6 1.518 4.222

1 −3.842 3.3 0.684 0.605 −3.714 0.2 0.649 0.582
10 −2.875 22.7 1.001 0.593 −3.717 0.1 0.512 0.506
100 −0.643 82.7 3.081 0.354 −3.720 0.0 0.247 0.295

0.3 0 −3.203 13.9 3.355 20.168 −3.218 13.5 3.260 20.171
1 −3.871 4.0 0.664 0.532 −3.716 0.1 0.630 0.517

10 −3.068 17.5 0.845 0.532 −3.719 0.0 0.522 0.460
100 −0.784 78.9 2.943 0.364 −3.721 0.0 0.283 0.285

Note. (1) ICC= Intra-Class Correlation; RMSE = Root Mean Square Error; Prec. = Precision; Est. = Estimate; and P.S.D. = Posterior Standard Deviation.
(2) When precision is 0, results are based on non-informative priors. (3) Accurate priors are obtained from true parameter values while inaccurate priors are
set arbitrarily to zero.

Our Bayesian estimation method used to estimate the
ACME and ANDE are based on following equations.

IC ij = α2i + β2iFAST j + π2iXij + ξ2iFAST j

·Xij + u20j + ε2ij ,

Peer problems ij = α3i + β3iFAST j + γiIC ij + κiFAST j

·IC ij + π3iXij + ξ3iFAST j ·Xij + u30j

+ ε3ij (30)

where IC is intergenerational closure and X is a vector
consisting of the pretreatment measure of intergenerational
closure and design effects. Note that the interaction ef-
fect is included in the model between the FAST interven-
tion and pretreatment measure of intergenerational closure.
As shown Simulation Study 2, the proposed method pro-
vides the unbiased estimates of the ACME and ANDE
when the interaction effect exists between the FAST in-
tervention and pretreatment measure of intergenerational
closure.

We specified non-informative priors on the coefficients,
random effects, and residuals as shown below.

β ∼ Np(0, 1000000), (31)

σ 2 ∼ Inverse-gamma(1, 0.1), (32)

Vb ∼ Inverse-Wishart(0.001, 0.001), (33)

where β represents all the fixed effects in the model, and is
assumed to follow the normal distribution with prior mean
of 0 and variance of 1000000. The error variance (σ 2) is
assumed to follow the Inverse-gamma distribution with a
shape parameter of 1 and rate parameter of 0.1. The covari-
ance matrix of random effects (Vb) is assumed to follow the
Inverse-Wishart distribution with shape and scale parameters
of 0.001.

For the sake of comparison, we also conducted causal me-
diation analysis with informative priors. For the informative
case, priors based on a frequentist analysis of these data were
used. We recognize that in practice researchers would not use
elicited priors of this sort. Rather, elicited priors should be
obtained more or less objectively from prior research or ex-
pert opinion (see e.g., O’Hagan et al., 2006).

We now turn our attention to the case where spillover
effects are present. Suppose the effect of the FAST interven-
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TABLE 6
Random Slope Model with Sample Size of 300 (30 Schools)

Inaccurate Prior Accurate Prior

True Value ICC Prec. Est. %Bias RMSE P.S.D. Est. %Bias RMSE P.S.D.

δ̂(0) = –3.12 0.1 0 −3.108 0.4 0.342 0.309 −3.108 0.4 0.342 0.309
1 −3.154 1.1 0.334 0.305 −3.108 0.4 0.336 0.306

10 −2.800 10.3 0.441 0.305 −3.108 0.4 0.302 0.288
100 −0.014 99.6 3.106 0.045 −3.110 0.3 0.155 0.203

0.2 0 −3.108 0.4 0.325 0.279 −3.108 0.4 0.325 0.279
1 −3.146 0.8 0.318 0.275 −3.108 0.4 0.321 0.276

10 −2.871 7.9 0.384 0.274 −3.108 0.4 0.294 0.263
100 −0.027 99.1 3.095 0.053 −3.110 0.3 0.164 0.193

0.3 0 −3.109 0.3 0.306 0.246 −3.109 0.3 0.306 0.246
1 −3.139 0.6 0.300 0.243 −3.109 0.3 0.303 0.245

10 −2.935 5.9 0.335 0.242 −3.109 0.3 0.283 0.235
100 −0.099 96.8 3.039 0.073 −3.111 0.3 0.173 0.181

δ̂(1) = –3.72 0.1 0 −3.697 0.6 0.416 0.377 −3.697 0.6 0.416 0.377
1 −3.834 3.1 0.421 0.373 −3.700 0.5 0.399 0.366
10 −3.455 7.1 0.457 0.377 −3.705 0.4 0.354 0.340
100 −0.062 98.3 3.658 0.063 −3.709 0.3 0.178 0.237

0.2 0 −3.698 0.6 0.395 0.339 −3.698 0.6 0.395 0.339
1 −3.816 2.6 0.399 0.337 −3.701 0.5 0.381 0.331

10 −3.540 4.8 0.401 0.338 −3.706 0.4 0.344 0.310
100 −0.092 97.5 3.631 0.076 −3.710 0.3 0.189 0.226

0.3 0 −3.700 0.5 0.372 0.299 −3.700 0.5 0.372 0.299
1 −3.799 2.1 0.373 0.297 −3.702 0.5 0.360 0.293

10 −3.616 2.8 0.358 0.298 −3.706 0.4 0.331 0.277
100 −0.196 94.7 3.545 0.103 −3.710 0.3 0.200 0.212

Note. (1) ICC= Intra-Class Correlation; RMSE = Root Mean Square Error; Prec. = Precision; Est. = Estimate; and P.S.D. = Posterior Standard Deviation.
(2) When precision is 0, results are based on non-informative priors. (3) Accurate priors are obtained from true parameter values while inaccurate priors are
set arbitrarily to zero.

tion on reducing student peer problems is mediated through
parent improved social capital as an individual, and is also
mediated through school atmosphere created by the level of
improved social capital on average. The assumptions also
apply here and were discussed in the previous case where

there is a within-group mediator. In addition to the assump-
tions, independence is assumed between the between-group
mediator and outcome. This assumption implies that there
is no confounding between the between-level mediator and
outcome given the treatment status and covariates. This as-

TABLE 7
Comparison Between the Conventional and Proposed Approaches When the Heterogeneous Treatment Effects on the Mediator

are Present

Conventional Approach Proposed Approach

True Value Dif. Est. %Bias RMSE P.S.D. Est. %Bias RMSE P.S.D.

Random Intercept
δ̂(0) = –5.07 0.6 −4.289 15.4 0.862 0.409 −5.081 0.2 0.415 0.407

0.3 −4.650 8.3 0.532 0.364 −5.093 0.4 0.336 0.340
0 −5.068 0.0 0.326 0.348 −5.077 0.1 0.324 0.317

δ̂(1) = –6.05 0.6 −5.113 15.4 1.030 0.409 −6.063 0.3 0.502 0.477
0.3 −5.530 8.5 0.647 0.364 −6.062 0.3 0.403 0.395
0 −6.051 0.1 0.388 0.348 −6.066 0.4 0.387 0.353

Random Slope
δ̂(0) = –5.07 0.6 −4.252 16.1 0.923 0.422 −5.044 0.5 0.468 0.414

0.3 −4.661 8.1 0.541 0.381 −5.096 0.5 0.367 0.347
0 −5.074 0.1 0.385 0.369 −5.080 0.2 0.386 0.325

δ̂(1) = –6.05 0.6 −5.076 16.0 1.088 0.422 −6.031 0.2 0.539 0.485
0.3 −5.543 8.3 0.649 0.381 −6.070 0.4 0.425 0.405
0 −6.053 0.1 0.415 0.369 −6.068 0.4 0.418 0.360

Note. (1) P.S.D. = Posterior Standard Deviation; and RMSE = Root Mean Square Error. (2) Dif. = Difference in probability of being in the treatment
group for those with X = 1 and X = 0 (P (T |X = 1)–P (T |X = 0)).
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330 PARK AND KAPLAN

TABLE 8
Comparison Between the Conventional and Proposed Approaches When the Heterogeneous Mediator Effects on the Outcome

are Present

Conventional Approach Proposed Approach

True Value Dif. Est. %Bias RMSE P.S.D. Est. %Bias RMSE P.S.D.

Random Intercept
δ̂(0) = –5.07 3 −4.289 15.4 0.862 0.409 −5.081 0.2 0.415 0.407

1 −4.650 8.3 0.532 0.364 −5.093 0.4 0.336 0.340
0 −5.068 0.0 0.326 0.348 −5.077 0.1 0.324 0.317

δ̂(1) = –6.05 3 −5.113 15.4 1.030 0.409 −6.063 0.3 0.502 0.477
1 −5.530 8.5 0.647 0.364 −6.062 0.2 0.403 0.395
0 −6.051 0.1 0.388 0.348 −6.066 0.4 0.387 0.353

Random Slope
δ̂(0) = –5.07 3 −4.252 16.1 0.923 0.422 −5.044 0.5 0.468 0.414

1 −4.661 8.1 0.541 0.381 −5.096 0.5 0.367 0.347
0 −5.074 0.1 0.385 0.369 −5.080 0.2 0.386 0.325

δ̂(1) = –6.05 3 −5.076 16.0 1.088 0.422 −6.031 0.2 0.539 0.485
1 −5.543 8.3 0.649 0.381 −6.070 0.4 0.425 0.405
0 −6.053 0.1 0.415 0.369 −6.068 0.4 0.418 0.360

Note. (1) P.S.D. = Posterior Standard Deviation; and RMSE = Root Mean Square Error. (2) Dif. = Difference in the average mediator value for those with
X = 1 and X = 0 ((M̄|X = 1)–(M̄|X = 0)).

sumption is not guaranteed to be met even after condition-
ing on covariates, and is not empirically testable. However,
the assumption may be plausible because the average pre-
treatment measured parent social capital is adjusted.

The assumption of independence between within-group
social capital and spillover effects is unlikely to hold in prac-
tice. The level of the parent social capital is likely to be
influenced by the school atmosphere that is created by the
improved parent social capital on average as parents engage
in social interactions inside and outside of their school. Due to
the violation of this assumption, the ACMEs through within-
level social capital and spillover effects are not estimated.

Results of Case Study

The FAST intervention effects on student peer problems
through parent improved intergenerational closure, i.e.,
whether parents know the parent of their children’s friends is
estimated by our proposed approach. The estimated ACME
and ANDE are presented in Table 9 and 10.

With non-informative priors, the estimated ACME for the
treated group is –0.02 and the 95% posterior probability
interval (PPI) indicates that the ACME is within the interval
of [–0.04, –0.01] . The estimated ANDE for the treated group
is –0.09 and the 95% PPI indicates that ANDE is within the
interval of [–0.27, 0.07]. These results are similar to estimates
for the control group except for the fact that the effect size
is slightly larger than the estimate for the treatment group.
Specifically, the estimated ACME for the control group is
–0.03 and the estimated ANDE for the control group is –0.10.

The results of the case study do not differ much when
incorporating informative priors. In fact, it is shown in the

first simulation study that informative priors play a limited
role when the sample size is large. The only difference lies in
the width of the PPI. The width of the PPIs after incorporating
informative priors tends to be smaller than intervals with non-
informative priors. For example, the interval of the ANDE
for the treatment group with non-informative prior is [–0.27,
0.02] while the interval with informative prior is [–0.20,
0.02]. This implies that incorporating correct priors provides
a precise estimate.

Overall, we conclude from the case study that the causal
effect of the FAST intervention on peer problems does

TABLE 9
Multilevel Bayesian Causal Mediation Effects with

Non-Informative Priors

Parameter EAP 95 Lower PPI 95 Upper PPI

Treated
Mediation Effect −0.02 −0.04 −0.01
Direct Effect −0.09 −0.27 0.07
Proportion via Mediation 0.15 −1.70 1.72
Not-treated
Mediation Effect −0.03 −0.05 −0.01
Direct Effect −0.10 −0.27 0.06
Proportion via Mediation 0.20 −2.30 2.37
Average
Mediation Effect −0.02 −0.04 −0.01
Direct Effect −0.09 −0.27 0.06
Proportion via Mediation 0.17 −1.90 2.29
Total Effect −0.12 −0.29 0.04

Note. (1) Multilevel structure of the data is taken into account using
Bayesian multilevel regression models with random intercept and slope. (2)
EAP = Expected A Posteriori; and PPI = Posterior Probability Interval.
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TABLE 10
Multilevel Bayesian Causal Mediation Effects with

Informative Priors

Parameter EAP 95 Lower PPI 95 Upper PPI

Treated
Mediation Effect −0.02 −0.04 −0.01
Direct Effect −0.09 −0.20 0.02
Proportion via Mediation 0.17 0.02 0.87
Not-treated
Mediation Effect −0.03 −0.04 −0.01
Direct Effect −0.10 −0.21 0.01
Proportion via Mediation 0.22 0.05 1.13
Average
Mediation Effect −0.02 −0.04 −0.01
Direct Effect −0.09 −0.21 0.02
Proportion via Mediation 0.19 0.05 0.99
Total Effect −0.12 −0.23 −0.01

Note. (1) Multilevel structure of the data is taken into account using
Bayesian multilevel regression models with random intercept and slope. (2)
EAP = Expected A Posteriori; and PPI = Posterior Probability Interval.

mediate through parent-improved intergenerational closure.
The average proportion of the total effect that is via media-
tion is 17%, which is obtained by dividing the ACME by the
average total effect.

SUMMARY AND CONCLUSION

Causal mediation analysis represents an important extension
of conventional mediation analysis allowing for the identifi-
cation and estimation of causal effects under the potential out-
comes framework. As with all methods of causal inference,
causal mediation analysis rests on strong assumptions, in par-
ticular the assumption of sequential ignorability. This article
offers a fully Bayesian approach to causal mediation anal-
ysis for group-randomized designs which directly encodes
uncertainty about the causal effect into the analysis through
the specification of a prior distribution on the causal effect.

FIGURE 1 The causal structural model when spillover effects are not
present. X = covariate; T= treatment; M = Mediator; Y = outcome.

FIGURE 2 The causal structural model when spillover effects are present.
X = covariate; T = treatment; M = within-school mediator; W = between
school mediator; Y = outcome.

In addition, our approach provides a method for addressing
homogeneous versus heterogeneous treatment and mediator
effects. The results of the first simulation study demonstrate
that our proposed Bayesian approach to causal mediation
analysis satisfies Bayesian as well as frequentist properties.
The second simulation study suggests that the proposed ap-
proach provides unbiased results even under heterogeneous
treatment or mediator effects by using G-computation as long
as models are correctly specified.

An essential component in the application of Bayesian
methods is the elicitation of priors on all model parameters.
In cases where prior knowledge is lacking, non-informative
prior distributions, such as the uniform distribution, can be
employed. If prior knowledge is available, then informative
prior with varying levels of precision can be employed. In
many applications there may be a mix of non-informative
and informative priors on model parameters, and this is par-
ticularly true for complex multiparameter models. In the con-
text of causal mediation analysis, we demonstrate the conse-
quences of using non-informative or informative priors on the
parameters of the mediation model. In the case of informa-
tive priors, we used the generating coefficients and, of course,
this would not occur in a real data setting. Bayesian method-
ology does allow for model comparison based on different
elicitations of priors using such statistics as the Bayes fac-
tors or posterior predictive checks (see e.g., Kaplan, 2014).
The development of these model comparison methods for
Bayesian causal mediation analysis was beyond the scope of
this article. Nevertheless, as background knowledge accumu-
lates, the Bayesian approach to causal mediation advocated
in this article should lead to more accurate estimates of causal
effects.

ARTICLE INFORMATION

Conflict of Interest Disclosures: Each author signed a form
for disclosure of potential conflicts of interest. No authors

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 1

2:
17

 2
3 

Ju
ne

 2
01

5 



332 PARK AND KAPLAN

reported any financial or other conflicts of interest in relation
to the work described.

Ethical Principles: The authors affirm having followed pro-
fessional ethical guidelines in preparing this work. These
guidelines include obtaining informed consent from human
participants, maintaining ethical treatment and respect for
the rights of human or animal participants, and ensuring the
privacy of participants and their data, such as ensuring that
individual participants cannot be identified in reported results
or from publicly available original or archival data.

Funding: This work was supported by Grant R305D110001
from the Institute of Educational Sciences. Case study data
for this article were collected under a grant (1R01HD051762-
01A2) from the National Institute of Child Health and Human
Development.

Role of the Funders/Sponsors: None of the funders or spon-
sors of this research had any role in the design and conduct
of the study; collection, management, analysis, and inter-
pretation of data; preparation, review, or approval of the
manuscript; or decision to submit the manuscript for pub-
lication.

Acknowledgments: The authors would like thank Peter
Steiner and anonymous reviewers of Multivariate Behav-
ioral Research for their comments on prior versions of this
manuscript. The ideas and opinions expressed herein are
those of the authors alone, and endorsement by the au-
thors’ institution, the Institute of Education Sciences, or the
National Institute of Child Health and Human Development
is not intended and should not be inferred.

REFERENCES

Baron, R. M., & Kenny, D. A. (1986). A moderator-mediator variable dis-
tinction in social psychological research. Journal of Personality and So-
cial Psychology, 51, 1173–1182. doi:10.1037/0022-3514.51.6.1173

Burstein, L. (1980). The analysis of multilevel data in educational re-
search and evaluation. Review of Research in Education, 8, 158–233.
doi:10.2307/1167125

Duncan, O. D. (1975). Introduction to structural equation models. New
York, NY: Academic.

Gelman, A. (2006). Prior distributions for variance parameters in hierar-
chical models (comment on article by Browne and Draper). Bayesian
Analysis, 1(3), 515–534. doi:10.1214/06-BA117A

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian
Data Analysis, 2nd ed. London, UK: Chapman and Hall.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs dis-
tributions and the Bayesian restoration of images). Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions, 6, 721–741.
doi:10.1080/02664769300000058

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1996). Markov
chain Monte Carlo in practice. London, UK: Chapman and Hall.

Goldberger, A. S., & Duncan, O. D. (1972). Structural equation methods in
the social sciences. New York, NY: Seminar.

Goldstein, H. (2011). Multilevel statistical models (4th ed.). New York, NY:
Wiley.

Goldstein, H., & McDonald, R. P. (1988). A general model for the analysis
of multilevel data. Psychometrika, 53, 455–467. doi:10.1007/bf02294400

Holland, P. W. (1986). Statistics and causal inference. Jour-
nal of the American Statistical Association, 81, 945–960.
doi:10.1080/01621459.1986.10478354

Imai, K., Keele, L., & Tingley, D. (2010). A general approach
to causal mediation analysis. Psychological Methods, 15, 309–334.
doi:10.1037/a0020761

Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the
black box of causality: Learning about causal mechanisms from exper-
imental and observational studies. American Political Science Review,
105, 765–789. doi:10.1017/s0003055411000414

Imai, K., Keele, L., & Yamamoto, T. (2010). Identification, inference and
sensitivity analysis for causal mediation effects. Statistical Science, 25,
51–71. doi:10.1214/10-sts321

Imai, K., & Yamamoto, T. (2013). Identification and sensitivity analysis for
multiple causal mechanisms: Revisiting evidence from framing esperi-
ments. Political Analysis, 21, 141–171. doi:10.1093/pan/mps040

Jo, B., Asparouhov, T., Muthén, B. O., Ialongo, N. S., & Brown, C. H. (2008).
Cluster randomized trials with treatment noncompliance. Psychological
Methods, 13(1), 1. doi:10.1037/1082-989x.13.1.1

Kaplan, D. (2009). Structural Equation Modeling: Foundations and Exten-
sions. (2nd ed.). Newbury Park, CA: Sage.

Kaplan, D. (2014). Bayesian statistics for the social sciences. New York,
NY: Guilford.

Kaplan, D., & Depaoli, S. (2012). Bayesian structural equation model-
ing. In R. Hoyle (Ed.), Handbook of Structural Equation Modeling
(pp. 650–673). New York: Guilford.

Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach. New
York, NY: Wiley.

Little, R. J. (2006). Calibrated Bayes: A Bayes/frequentist roadmap. The
American Statistician, 60, 213–223. doi:10.1198/000313006X117837

Little, R. J. (2011). Calibrated Bayes for statistics in general and missing data
in particular. Statistical Science, 26, 162–174. doi:10.1214/10-STS318

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis.
New York, NY: Routledge.

Martin, A. D., Quinn, K. M., & Park, J. H. (2010 May 10). Markov chain
Monte Carlo (MCMC) Package. http://mcmcpack.wustl.edu

McDonald, L. (2002). Evidence-based, family strengthening to reduce delin-
quency: FAST Families and Schools Together. Social workers’ desk ref-
erence. New York, NY: Oxford University.

McDonald, L., & Frey, H. E. (1999). Families and schools together: Build-
ing relationships. U.S. Department of Justice, Office of Justice Pro-
grams, Washington, DC: Office of Juvenile Justice and Delinquency
Prevention.

McDonald, R. P. (1993). A general model for two level data
with responses missing at random. Psychometrika, 58, 575–585.
doi:10.1007/bf02294828

McDonald, R. P. (1994). The bilevel reticular action model for path analysis
with latent variables. Sociological Methods and Research, 22, 399–413.
doi:10.1177/0049124194022003007

McDonald, R. P., & Goldstein, H. (1989). Balanced versus unbal-
anced designs for linear structural relations in two-level data. British
Journal of Mathematical and Statistical Psychology, 42, 215–232.
doi:10.1111/j.2044-8317.1989.tb00911.x

Muthén, B. (1989). Latent variable modeling in heterogenous populations.
Psychometrika, 54, 557–585. doi:10.1007/bf02296397

Muthén, B., & Asparouhov, T. (2012). Bayesian SEM: A more flexible rep-
resentation of substantive theory. Psychological Methods, 17, 313–335.
doi:10.1037/a0026802

O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H.,
Jenkinson, D. J., . . . Rakow, T. (2006). Uncertain Judgements: Eliciting
Experts’ Probabilities. West Sussex, England: Wiley.

Pearl, J. (2000). Causality: Models, reasoning and inference (Vol. 29). Cam-
bridge, MA: MIT Press.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 1

2:
17

 2
3 

Ju
ne

 2
01

5 



BAYESIAN CAUSAL MEDIATION 333

R Development Core Team. (2013). R: A language and environment for
statistical computing [Computer software manual]. Vienna, Austria. Re-
trieved from http://www.R-project.org

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models:
Applications and Data Analysis Methods (2nd ed.). Thousands Oaks,
CA: Sage.

Reardon, S. F., & Raudenbush, S. W. (2013). Under what as-
sumptions do site-by-treatment instruments identify average causal
effects? Sociological Methods & Research, 42(2), 143–163.
doi:10.1177/0049124113494575

Robins, J. M. (1986). A new approach to causal inference in mortality
studies with a sustained exposure period – application to control of the
healthy worker survivor effect. Mathematical Modeling, 7, 1393–1512.
doi:10.1016/0270-0255(86)90088-6

Robins, J. M. (1989). The analysis of randomized and non-randomized AIDS
treatment trials using a new approach to causal inference in longitudinal
studies. Health service research methodology: A focus on AIDS, 113, 159.

Rubin, D. B. (1974). Estimating causal effects of treatments in random-
ized and nonrandomized studies. Journal of Educational Psychology, 66,
688–701. doi:10.1037/h0037350

Schafer, J. L., & Kang, J. (2008). Average causal effects from non-
randomized studies: A practical guide and simulated example. Psycho-
logical Methods, 13, 279–313. doi:10.1037/a0014268

Schmidt, W. H. (1969). Covariance structure analysis of the multivariate
random effects model. Unpublished doctoral dissertation, University of
Chicago.

Snowden, J. M., Rose, S., & Mortimer, K. M. (2011). Implementation of
g-computation on a simulated data set: Demonstration of a causal in-
ference technique. American Journal of Epidemiology, 173(7), 731–738.
doi:10.1093/aje/kwq472

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect ef-
fects in structural equation models. Sociological Methodology, 13(1982),
290–312. doi:10.2307/270723

Song, X.-Y., & Lee, S.-Y. (2012). Basic and Advanced Bayesian Structural
Equation Modeling: With Applications in the Medical and Behavioral
Sciences. New York, NY: John Wiley & Sons.

Turley, R. N. L., Gamoran, A., Turner, A., & Fish, A. (2012). Causal effects
of social capital on child outcomes. Unpublished manuscript.

VanderWeele, T., Hong, G., Jones, S., & Brown, J. (2013). Mediation and
spillover effects in group-randomized trials: A case study of the 4r’s
educational intervention. Journal of the American Statistical Association,
108, 469–482. doi:10.1080/01621459.2013.779832

Yamamoto, T. (2013). Identification and estimation of causal mediation
effects with treatment noncompliance. Unpublished manuscript.

Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation Analysis. Psy-
chological Methods, 14, 301–322. doi:10.1037/a0016972

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 1

2:
17

 2
3 

Ju
ne

 2
01

5 


